N-vector model - significado y definición. Qué es N-vector model
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es N-vector model - definición


N-vector model         
SIMPLE SYSTEM OF INTERACTING SPINS ON A CRYSTALLINE LATTICE
O(n) model
In statistical mechanics, the n-vector model or O(n) model is a simple system of interacting spins on a crystalline lattice. It was developed by H.
Vector space model         
ALGEBRAIC MODEL FOR REPRESENTING TEXT DOCUMENTS (AND ANY OBJECTS, IN GENERAL) AS VECTORS OF IDENTIFIERS, SUCH AS, FOR EXAMPLE, INDEX TERMS
Vector Space Model; Topic-based Vector Space Model; Topic based vector space model; Topic based Vector Space Model; Topic Based Vector Space Model; Vectorial semantics; Term vector model
Vector space model or term vector model is an algebraic model for representing text documents (and any objects, in general) as vectors of identifiers (such as index terms). It is used in information filtering, information retrieval, indexing and relevancy rankings.
Topic-based vector space model         
ALGEBRAIC MODEL FOR REPRESENTING TEXT DOCUMENTS (AND ANY OBJECTS, IN GENERAL) AS VECTORS OF IDENTIFIERS, SUCH AS, FOR EXAMPLE, INDEX TERMS
Vector Space Model; Topic-based Vector Space Model; Topic based vector space model; Topic based Vector Space Model; Topic Based Vector Space Model; Vectorial semantics; Term vector model
The Topic-based Vector Space Model (TVSM) (literature: extends the vector space model] of [[information retrieval by removing the constraint that the term-vectors be orthogonal. The assumption of orthogonal terms is incorrect regarding natural languages which causes problems with synonyms and strong related terms.